See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323591308

On Fully-Convex Harmonic Functions and their Extension

Article in Boletim da Sociedade Paranaense de Matematica • February 2018
DOI: 10.5269/bspm.v38i2.34684

Some of the authors of this publication are also working on these related projects:

[^0]
On Fully-Convex Harmonic Functions and their Extension

Shahpour Nosrati and Ahmad Zireh

Abstract

Uniformly convex univalent functions that introduced by Goodman, maps every circular arc contained in the open unit disk with center in it into a convex curve. On the other hand, a fully-convex harmonic function, maps each subdisk $|z|=r<1$ onto a convex curve. Here we synthesis these two ideas and introduce a family of univalent harmonic functions which are fully-convex and uniformly convex also. In the following we will mention some examples of this subclass and obtain a necessary and sufficient conditions and finally a coefficient condition is given as an aplication of some convolution results.

Key Words: Uniformly convex function, Fully-Convex function, Harmonic function, Convolution.

Contents

1 Introduction and Preliminaries 51
2 Definition and Examples
3 Convolution and a sufficient condition

1. Introduction and Preliminaries

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disk in complex plane. Let \mathcal{A} be the familier class of all analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

in the open unit disk \mathbb{D}. Let \mathcal{S} denotes the family of all functions $f(z)$ of the form (1.1) that are univalent in \mathbb{D} and normalized with $f(0)=0$ and $f^{\prime}(0)=1$.

A conformal function $f(z)$ is said to be starlike if every point of its range can be connected to the origin by a radial line that lies entirely in that region. The class of all starlike functions in \mathcal{S} is shown by $\mathcal{S}^{*}[9]$ and $f(z) \in \mathcal{S}^{*}$ if and only if $\boldsymbol{\operatorname { R e }}\left\{z \frac{f^{\prime}(z)}{f(z)}\right\}>0$. Starlikeness is a hereditary property for conformal mappings, so if $f(z) \in \mathcal{S}$, and if f maps \mathbb{D} onto a domain that is starlike with respect to the origin, then the image of every subdisk $|z|<r<1$ is also starlike with respect to the origin.

[^1]An analytic function $f(z)$ is said to be convex if its range $f(\mathbb{D})$ is a convex set. It has shown that every convex function f in \mathcal{S} satisfy following analytic property

$$
\boldsymbol{\operatorname { R e }}\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0
$$

The class of all convex functions in \mathcal{S} is denoted by \mathcal{K} [9].
The subclass of uniformly starlike functions, UST introduced by Goodman [6] and studied in analytic and geometric view.
Definition 1.1. [6] A function $f(z) \in \mathcal{S}^{*}$ is said to be uniformly starlike in \mathbb{D} if it has the property that for every circular arc γ contained in \mathbb{D}, with center $\zeta \in \mathbb{D}$, the arc $f(\gamma)$ be starlike with respect to $f(\zeta)$. We denote the family of all uniformly starlike functions by UST and we have,

$$
\begin{equation*}
\mathcal{U S T}=\left\{f(z) \in \mathcal{S}: \operatorname{Re} \frac{(z-\zeta) f^{\prime}(z)}{f(z)-f(\zeta)}>0,(z, \zeta) \in \mathbb{D}^{2}\right\} \tag{1.2}
\end{equation*}
$$

It's clear that $\mathcal{U S T} \subset \mathcal{S}^{*}$ and every function in $\mathcal{U S T}$ maps each subdisk $\{|z-\zeta|<$ $\rho\} \subset \mathbb{D}$ onto a domain starlike with respect to $f(\zeta)$. Goodman [5] also defined the subclass of convex functions with this property that map each disk $\{|z-\zeta|<\rho\} \subset \mathbb{D}$ onto a convex domain and called it uniformly convex function and denoted the set of all these functions by $\mathcal{U C V}$:
Definition 1.2. [5] A function $f(z) \in \mathcal{K}$ is said to be uniformly convex in \mathbb{D} if it has the property that for every circular arc γ contained in \mathbb{D}, with center $\zeta \in \mathbb{D}$, the arc $f(\gamma)$ be a convex arc. We have,

$$
\begin{equation*}
\mathcal{U Q V}=\left\{f(z) \in \mathcal{S}: \operatorname{Re}\left(1+(z-\zeta) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \geq 0,(z, \zeta) \in \mathbb{D}^{2}\right\} \tag{1.3}
\end{equation*}
$$

A summary of early works on uniformly starlike and uniformly convex functions can be found in [10].

The complex-valued function $f(x, y)=u(x, y)+i v(x, y)$ is complex-valued harmonic function in \mathbb{D} if f is continuous and u and v are real harmonic in \mathbb{D}. We denote H the family of continuous complex-valued functions which are harmonic in the open unit disk \mathbb{D}. In simply-connected domain $\mathbb{D}, f \in H$ has a canonical representation $f=h+\bar{g}$, where h and g are analytic in $\mathbb{D}[3,4]$. Then, g and h have expansions in Taylor series as $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, so we may represent f by a power series of the form

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=\sum_{n=0}^{\infty} a_{n} z^{n}+\overline{\sum_{n=0}^{\infty} b_{n} z^{n}} \tag{1.4}
\end{equation*}
$$

The Jacobian of a function $f=u+i v$ is $J_{f}(z)=\left|\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}$, and $f(z)=h(z)+\overline{g(z)}$ is sense-preserving if $J_{f}(z)>0$. In 1984, Clunie and Sheil-Small
[3] investigated the class S_{H}, consisting of sense-preserving univalent harmonic functions $f(z)=h(z)+\overline{g(z)}$ in simply-connected domain \mathbb{D} which normalized by $f(0)=0$ and $f_{z}(0)=1$ with the form,

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=z+\sum_{n=2}^{\infty} a_{n} z^{n}+\overline{\sum_{n=1}^{\infty} b_{n} z^{n}} \tag{1.5}
\end{equation*}
$$

The subclass \mathcal{S}_{H}^{0} of \mathcal{S}_{H} includes all functions $f \in \mathcal{S}_{H}$ with $f_{\bar{z}}(0)=0$, so $\mathcal{S} \subset \mathcal{S}_{H}^{0} \subset$ \mathcal{S}_{H}. Clunie and Sheil-Small also considered convex functions in S_{H}, denoted by \mathcal{K}_{H}. The hereditary property of convexity for conformal maps does not generalize to univalent harmonic mappings. If f is a univalent harmonic map of \mathbb{D} onto a convex domain, then the image of the disk $|z|<r$ is convex for each radius $r \leq \sqrt{2}-1$, but not necessarily for any radius in the interval $\sqrt{2}-1<r<1$. In fact, the function

$$
\begin{align*}
f(z) & =\operatorname{Re} \frac{z}{1-z}+i \operatorname{Im} \frac{z}{(1-z)^{2}} \tag{1.6}\\
& =\frac{z-\frac{1}{2} z^{2}}{(1-z)^{2}}+\frac{-\frac{1}{2} \bar{z}^{2}}{(1-\bar{z})^{2}} \in \mathcal{K}_{H}
\end{align*}
$$

is a harmonic mapping of the disk \mathbb{D} onto the half-plane $\boldsymbol{\operatorname { R e }} w>-\frac{1}{2}$, but the image of the disk $|z| \leq r$ fails to be convex for every r in the interval $\sqrt{2}-1<r<1$ [4]. Thus we need a property to explain convexity of a map in a hereditary form in whole disk. We have following definition.

Definition 1.3. [2] A harmonic mapping f with $f(0)=0$ of the unit disk is said to be fully-convex if it maps every circle $|z|=r<1$ in a one-to-one manner onto a convex curve.

For $f \in \mathcal{S}_{H}$, the family of fully-convex harmonic functions denotes by $\mathcal{F} \mathcal{K}_{H}$. In 1980 Mocanu gave a relation between fully-starlikeness and a differential operator of a non-analytic function [7]. Let

$$
\begin{equation*}
D f=z f_{z}-\bar{z} f_{\bar{z}} \tag{1.7}
\end{equation*}
$$

be the differential operator and

$$
\begin{equation*}
D^{2} f=D(D f)=z z f_{z z}+\overline{z z} f_{\overline{z z}}+z f_{z}+\bar{z} f_{\bar{z}} \tag{1.8}
\end{equation*}
$$

Lemma 1.4. [7] Let $f \in C^{1}(\mathbb{D})$ is a complex-valued function such that $f(0)=0$, $f(z) \neq 0$ for all $z \in \mathbb{D}-\{0\}$, and $J_{f}(z)>0$ in \mathbb{D} and $\operatorname{Re} \frac{D f(z)}{f(z)}>0$ then f is univalent and fully-starlike in \mathbb{D}.
Lemma 1.5. Let $f \in C^{2}(\mathbb{D})$ is a complex-valued function such that $f(0)=0$, $f(z) \neq 0$ for all $z \in \mathbb{D}-\{0\}$, and $J_{f}(z)>0$ in \mathbb{D} and $\boldsymbol{\operatorname { R e }} \frac{D^{2} f(z)}{D f(z)}>0$ then f is univalent and fully-convex in \mathbb{D}.

Since for a sense-preserving complex-valued function $f(z), D f \neq 0$, If $f(z) \in \mathcal{S}_{H}$ and satisfies condition such as $\boldsymbol{\operatorname { R e }} \frac{D f(z)}{f(z)}>0$ or $\boldsymbol{\operatorname { R e }} \frac{D^{2} f(z)}{D f(z)}>0$ for all $z \in \mathbb{D}-\{0\}$, then f maps every circle $0<|z|=r<1$ onto a simple closed curve [7]. However, a fully-starlike mapping need not be univalent [2], we restrict our discussion to \mathcal{S}_{H}.

2. Definition and Examples

For a harmonic function $f(z)=h(z)+\overline{g(z)} \in \mathcal{S}_{H}$, and $\zeta \in \mathbb{D}$ we define the operator

$$
\begin{align*}
\mathbf{D} f(z, \zeta) & =(z-\zeta) f_{z}(z)-\overline{(z-\zeta)} f_{\bar{z}}(z) \\
& =(z-\zeta) h^{\prime}(z)-\overline{(z-\zeta) g^{\prime}(z)} \tag{2.1}
\end{align*}
$$

is harmonic also. For $\zeta=0$ the operator $\mathbf{D} f(z, 0)=z f_{z}-\bar{z} f_{\bar{z}}=z h^{\prime}-\overline{z g^{\prime}}=D f(z)$ is previous operator (1.7). Differentiating of the operator $\mathbf{D} f(z, \zeta)$ gives us

$$
\begin{align*}
\mathbf{D}^{2} f(z, \zeta) & =\mathbf{D}(\mathbf{D} f(z, \zeta)) \\
& =\mathbf{D}\left((z-\zeta) h^{\prime}(z)-\overline{(z-\zeta) g^{\prime}(z)}\right) \\
& =(z-\zeta)^{2} h^{\prime \prime}(z)+\overline{(z-\zeta)^{2} g^{\prime \prime}(z)}+(z-\zeta) h^{\prime}(z) \tag{2.2}
\end{align*}
$$

For $\zeta=0$ the operator $\mathbf{D}^{2} f(z, 0)=z^{2} h^{\prime \prime}(z)+\overline{z^{2} g^{\prime \prime}(z)}+z h^{\prime}(z)+\overline{z g^{\prime}(z)}=D^{2} f(z)$ has described by Al-Amiri and Mocanu [1]. Similar to definition (1.1) we say that for an arbitrary function:

Definition 2.1. A function $f \in \mathcal{S}_{H}$ is said to be uniformly fully-convex harmonic function in \mathbb{D} if it has the property that for every circular arc γ contained in \mathbb{D}, with center $\zeta \in \mathbb{D}$, the arc $f(\gamma)$ is convex in $f(\mathbb{D})$.

We denote the set of all uniformly fully-convex harmonic functions in \mathbb{D} by $\mathcal{U F F}_{H}$. The following theorem gives analytic equivalency for above definition:

Theorem 2.2. Let $f \in \mathcal{S}_{H} . f \in \mathcal{U F \mathcal { F }}_{H}$ if and only if

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }} \frac{\boldsymbol{D}^{2} f(z, \zeta)}{\boldsymbol{D} f(z, \zeta)}>0,(z, \zeta) \in \mathbb{D}^{2} \tag{2.3}
\end{equation*}
$$

Proof: Let $\gamma: \zeta+r e^{i \theta}$ with $\theta_{1} \leq \theta \leq \theta_{2}$ be a circular arc centered at ζ and contained in \mathbb{D}, then the image of γ under f is convex if the argument of the tangent to the image be a non-decreasing function of θ, that is,

$$
\frac{\partial}{\partial \theta}\left(\arg \frac{\partial}{\partial \theta}\{f(z)-f(\zeta)\}\right) \geq 0
$$

Hence

$$
\operatorname{Im} \frac{\partial}{\partial \theta}\left(\log \frac{\partial}{\partial \theta}\{f(z)-f(\zeta)\}\right) \geq 0
$$

But for a circular $\operatorname{arc} \gamma$, set $z=\zeta+r e^{i \theta}$, then $\frac{\partial}{\partial \theta} z=i(z-\zeta)$ and a brief computation will give us

$$
\frac{\partial}{\partial \theta}\{f(z)-f(\zeta)\}=i\left\{(z-\zeta) f_{z}(z)-\overline{(z-\zeta)} f_{\bar{z}}(z)\right\}=i \mathbf{D} f(z, \zeta)
$$

then

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log i \mathbf{D} f(z, \zeta) & =\frac{\partial}{\partial \theta} \log i\left\{(z-\zeta) h^{\prime}(z)-\overline{(z-\zeta) g^{\prime}(z)}\right\} \\
& =\frac{i\left[h^{\prime}(z)+(z-\zeta) h^{\prime \prime}(z)\right]}{i \mathbf{D} f(z, \zeta)} i(z-\zeta) \\
& -\frac{\frac{i \overline{\left[g^{\prime}(z)+(z-\zeta) g^{\prime \prime}(z)\right]}}{i \mathbf{D} f(z, \zeta)} \overline{i(z-\zeta)}}{} \\
& =i \frac{\mathbf{D}^{2} f(z, \zeta)}{\mathbf{D} f(z, \zeta)}
\end{aligned}
$$

Therefore, we must have

$$
\boldsymbol{\operatorname { I m }} \frac{\partial}{\partial \theta} \log i \mathbf{D} f(z, \zeta)=\boldsymbol{\operatorname { R e }} \frac{\mathbf{D}^{2} f(z, \zeta)}{\mathbf{D} f(z, \zeta)} \geq 0
$$

as we want.
It should be noted that $\frac{\mathbf{D}^{2} f(z, \zeta)}{\mathbf{D} f(z, \zeta)}(0,0)=1$, and

$$
\begin{equation*}
\mathcal{U F} \mathcal{K}_{H}=\left\{f(z) \in \mathcal{S}_{H}: \boldsymbol{\operatorname { R e }} \frac{\mathbf{D}^{2} f(z, \zeta)}{\mathbf{D} f(z, \zeta)}>0,(z, \zeta) \in \mathbb{D}^{2}\right\} \tag{2.4}
\end{equation*}
$$

It's simple that one checks the rotations, $e^{-i \alpha} f\left(e^{i \alpha} z\right)$ for some real α, are preserve the class $\cup \mathcal{F} \mathcal{K}_{H}$ and the transformation $\frac{1}{t} f(t z)$ preserves this class also, where $0<t \leq 1$. On the other hand, the class $\mathfrak{U \mathcal { F } \mathcal { K } _ { H } \text { includes all fully-convex functions }}$ and uniformly convex functions. With $g=0$ in (2.3), the analytic function $f(z) \in$ $\mathcal{U F F}_{H}$ by (2.1) and (2.2) satisfies condition

$$
\boldsymbol{\operatorname { R e }} \frac{\mathbf{D}^{2} f(z, \zeta)}{\mathbf{D} f(z, \zeta)}=\boldsymbol{\operatorname { R e }} \frac{(z-\zeta)^{2} h^{\prime \prime}(z)+(z-\zeta) h^{\prime}(z)}{(z-\zeta) h^{\prime}(z)}=\boldsymbol{\operatorname { R e }}\left(1+(z-\zeta) \frac{h^{\prime \prime}(z)}{h^{\prime}(z)}\right) \geq 0
$$

where $(z, \zeta) \in \mathbb{D}^{2}$. Then
Corollary 2.3. If $f \in \mathcal{U C V}$ be an analytic function, then $f \in \mathcal{U F}_{H}$. So, UCV \subset $\mathcal{U F K}_{H} \subset \mathcal{K}_{H}$. Goodman [5] shows the analytic function $f(z)=\frac{z}{1-A z} \in \mathcal{U C V}$ if and only if $|A| \leq \frac{1}{3}$, thus the convex function $f(z)=\frac{z}{1-z} \notin \mathcal{U} \mathcal{F} \mathcal{K}_{H}$.

Example 2.1. For $|\beta|<1$ the affine mappings $f(z)=z+\overline{\beta z} \in \mathcal{U} \mathcal{F} \mathcal{K}_{H}$, since

$$
\boldsymbol{\operatorname { R e }} \frac{(z-\zeta)+\overline{(z-\zeta) \beta}}{(z-\zeta)-\overline{(z-\zeta) \beta}} \geq 0
$$

is equivalent to

$$
\boldsymbol{\operatorname { R e }}((z-\zeta)+\overline{(z-\zeta) \beta})(\overline{(z-\zeta)}-(z-\zeta) \beta) \geq 0
$$

that is $\left(1-|\beta|^{2}\right)|z-\zeta|^{2} \geq 0$.
Corollary 2.4. For $\zeta=0$ in (2.3), the harmonic function $f \in \mathcal{U} \mathcal{F}_{H}$ will be univalent and fully-convex in \mathbb{D} by Lemma 1.5. Thus it's clear any non fully-convex harmonic function is not in $\mathfrak{U F}_{H}$. The harmonic function $f(z)=\boldsymbol{\operatorname { R e }} \frac{z}{1-z}+$ $i \operatorname{Im} \frac{z}{(1-z)^{2}}$ isn't fully-convex ([4], p.46), then $f \notin \mathcal{U} \mathcal{F} \mathcal{K}_{H}$.

In the following we will give a necessary and sufficient condition for that $f \in$ $\mathcal{U F} \mathcal{K}_{H}$. This condition is a generalization form of a theorem about fully-convex functions mentioned by Chuaqui et al. in [2], p139.
Theorem 2.5. Let $f(z) \in \mathcal{S}_{H}, f \in \mathcal{U F \mathcal { F }}_{H}$ if and only if

$$
\begin{align*}
& \left|(z-\zeta) h^{\prime}(z)\right|^{2} \boldsymbol{\operatorname { R e }} Q_{h} \geq \tag{2.5}\\
& \left|(z-\zeta) g^{\prime}(z)\right|^{2} \boldsymbol{\operatorname { } e} Q_{g}+\boldsymbol{\operatorname { R e }}\left\{(z-\zeta)^{3}\left(h^{\prime \prime}(z) g^{\prime}(z)-h^{\prime}(z) g^{\prime \prime}(z)\right)\right\}
\end{align*}
$$

where $Q_{h}=1+(z-\zeta) \frac{h^{\prime \prime}(z)}{h^{\prime}(z)}$ and $Q_{g}=1+(z-\zeta) \frac{g^{\prime \prime}(z)}{g^{\prime}(z)}$ for (z, ζ) in polydisk \mathbb{D}^{2}.
Proof: According to the definition, $f \in \mathcal{U} \mathcal{F} \mathcal{K}_{H}$ if and only if $\boldsymbol{\operatorname { R e }} \frac{\mathbf{D}^{2} f(z, \zeta)}{\mathbf{D} f(z, \zeta)}>0$ for $(z, \zeta) \in \mathbb{D}^{2}$, if and only if $\boldsymbol{\operatorname { R e }}\left\{\mathbf{D}^{2} f(z, \zeta) \overline{\mathbf{D} f(z, \zeta)}\right\}>0$ for $(z, \zeta) \in \mathbb{D}^{2}$, then a simple calculation gives us (2.5).
Lemma 2.6. $f=h+\overline{\beta h} \in \mathcal{U} \mathcal{F X}_{H}$ if and only if $h \in \mathcal{U C V}$, where $|\beta|<1$.
Proof: Let $f=h+\bar{g} \in \mathcal{S}_{H}$ and $g=\beta h$ with $|\beta|<1$, then $f \in \mathcal{U} \mathcal{F X}_{H}$ if and only if (2.5) holds. Since in this case, h and g satisfy equality $Q_{h}=Q_{g}$ so (2.5) holds if and only if $\left|(z-\zeta) h^{\prime}(z)\right|^{2} \boldsymbol{\operatorname { R e }} Q_{h}\left(1-|\beta|^{2}\right) \geq 0$, or $\boldsymbol{\operatorname { R e }} Q_{h} \geq 0$ that shows $h \in \mathcal{U C V}$.

Example 2.2. The analytic function $h=z+A z^{2}$ is in $\mathcal{U C V}$ if and only if $|A| \leq \frac{1}{6}$ [5]. By Lemma 2.6 we get $f(z)=z+A z^{2}+\overline{\beta z+\beta A z^{2}} \in \underline{\mathcal{U F} \mathcal{K}_{H} \text { with }|\beta|<1 \text { and }}$ $|A| \leq \frac{1}{6}$. For example, let $A=\frac{1}{6}, \beta=-\frac{i}{2}$ then $f=z+\frac{1}{6} z^{2}-\overline{\frac{i}{2} z-\frac{i}{12} z^{2}} \in \mathcal{U} \mathcal{F} \mathcal{K}_{H}$. In Figure 1, the disk $|z-0.7|<0.3$ is mapped under this uniformly fully-convex harmonic function to a convex elliptical shape with center $f(\zeta)=(0.78,0.39)$.

Figure 1: The image of $|z-0.7|<0.3$ under $f=z+\frac{1}{6} z^{2} \overline{-\frac{i}{2} z-\frac{i}{12} z^{2}} \in \mathcal{U} \mathcal{F} \mathcal{K}_{H}$.

3. Convolution and a sufficient condition

The convolution or Hadamard product of two harmonic functions $f(z)$ and $F(z)$ with canonical representations

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=z+\sum_{n=2}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} \overline{b_{n}} \bar{z}^{n} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F(z)=H(z)+\overline{G(z)}=z+\sum_{n=2}^{\infty} A_{n} z^{n}+\sum_{n=1}^{\infty} \overline{B_{n}} \bar{z}^{n} \tag{3.2}
\end{equation*}
$$

is defined as

$$
\begin{equation*}
(f * F)(z)=(h * H)(z)+\overline{g * G(z)}=z+\sum_{n=2}^{\infty} a_{n} A_{n} z^{n}+\sum_{n=1}^{\infty} \overline{b_{n} B_{n}} \bar{z}^{n} \tag{3.3}
\end{equation*}
$$

The right half-plane mapping $\ell(z)=\frac{z}{1-z}$ acts as the convolution identity and the Koebe map $k(z)=\frac{z}{(1-z)^{2}}$ acts as derivative operation over functions convolution. We have some properties for convolution over analytic functions f and g :

$$
\begin{array}{lll}
f * g=g * f & , & \alpha(f * g)=\alpha f * g \\
f * \ell=f & , & z f^{\prime}(z)=f * k(z)
\end{array}
$$

where $\alpha \in \mathbb{C}$. For a given subset $\mathcal{V} \subset \mathcal{A}$, its dual set \mathcal{V}^{*} is defined by

$$
\begin{equation*}
\mathcal{V}^{*}=\left\{g \in \mathcal{A}: \frac{f * g(z)}{z} \neq 0, \forall f \in \mathcal{V}, \forall z \in \mathbb{D}\right\} \tag{3.4}
\end{equation*}
$$

Nezhmetdinov (1997) proved that class $\mathcal{U C V}$ is dual set for certain family of functions from \mathcal{A}. He proved ([8], Theorem 2, p.43) that the class UXV is the dual set of a subset of \mathcal{A} consisting of functions $\varphi: \mathbb{D} \rightarrow \mathbb{C}$ given by

$$
\begin{equation*}
\varphi(z)=\frac{z}{(1-z)^{3}}\left[1-z-\frac{4 z}{(\alpha+i)^{2}}\right] \tag{3.5}
\end{equation*}
$$

where $\alpha \in \mathbb{R}$. He determined the uniform estimate $\left|a_{n}(\varphi)\right| \leq n(2 n-1)$ for the n-th Taylor coefficient of $\varphi(z)$:

Lemma 3.1. [8] Let G is all function $\varphi \in \mathcal{A}$ of the form (3.5), then $\mathfrak{U C V}=G^{*}$ and $\left|a_{n}(\varphi)\right| \leq n(2 n-1)$ for all $n \geq 2$.

For obtaining a sufficient condition in class $\mathcal{U F}_{\mathcal{F}}^{H}$, we define the dual set of a harmonic function. Let \mathcal{A}_{H} be the class of complex-valued harmonic functions $f(z)=h(z)+\overline{g(z)}$ in simply connected domain \mathbb{D} of the form (1.5) which are not necessarily sense-preserving univalent on \mathbb{D}. We define the dual set of a subset of \mathcal{A}_{H} :
Definition 3.2. For a given subset $\mathcal{V}_{H} \subset \mathcal{A}_{H}$, the dual set \mathcal{V}_{H}^{*} is

$$
\begin{equation*}
\mathcal{V}_{H}^{*}=\left\{F=H+\bar{G} \in \mathcal{A}_{H}: \frac{h * H}{z}+\frac{\overline{g * G}}{\bar{z}} \neq 0, \forall f=h+\bar{g} \in \mathcal{V}_{H}, \forall z \in \mathbb{D}\right\} \tag{3.6}
\end{equation*}
$$

Theorem 3.3. Let $\alpha \in \mathbb{R},|w|=1$ and

$$
\begin{aligned}
& G_{H}=\left\{\varphi-\sigma \bar{\varphi}: \varphi(z)=\frac{z}{(1-z)^{3}}\left(1-\frac{w-i \alpha}{2-w-i \alpha} z\right),\right. \\
&\left.\sigma=\frac{\overline{(1-w)(2-w-i \alpha)}}{(1-w)(2-w-i \alpha)}, z \in \mathbb{D}\right\}
\end{aligned}
$$

then $\mathfrak{U F \mathcal { K }}_{H}=G_{H}^{*}$. Furthermore If $\sum_{n=2}^{\infty} n(2 n-1)\left|a_{n}\right|+n(2 n-1)\left|b_{n}\right|<1-\left|b_{1}\right|$ then $f \in \mathcal{U F} \mathcal{K}_{H}$.

It's clear that the analytic function φ is the same (3.5), but σ with $|\sigma|=1$ isn't an arbitrary number and depend on both w and α in φ.
Proof: Let $f=h+\bar{g} \in \mathcal{U} \mathcal{F} \mathcal{K}_{H}$, that is

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }} \frac{(z-\zeta)^{2} h^{\prime \prime}(z)+\overline{(z-\zeta)^{2} g^{\prime \prime}(z)}+(z-\zeta) h^{\prime}(z)+\overline{(z-\zeta) g^{\prime}(z)}}{(z-\zeta) h^{\prime}(z)-\overline{(z-\zeta) g^{\prime}(z)}}>0 \tag{3.7}
\end{equation*}
$$

$(z, \zeta) \in \mathbb{D}^{2}$. For $\zeta=0$ and then $z=0$ we have $\frac{\mathbf{D}^{2} f(z, \zeta)}{\mathbf{D} f(z, \zeta)}=1$, hence the condition (3.7) may be write as

$$
\begin{aligned}
i \alpha\left((z-\zeta) h^{\prime}(z)-\overline{(z-\zeta) g^{\prime}(z)}\right) \neq & (z-\zeta)^{2} h^{\prime \prime}(z)+\overline{(z-\zeta)^{2} g^{\prime \prime}(z)} \\
& +(z-\zeta) h^{\prime}(z)+\overline{(z-\zeta) g^{\prime}(z)}
\end{aligned}
$$

where $\alpha \in \mathbb{R}$. By the minimum principle for harmonic functions, it is sufficient to verify this condition for $|z|=|\zeta|$ and so, we may assume that $\zeta=w z$ with $|w|=1$, then from the definition of the dual set for harmonic functions (3.6), with straightforward calculation we conclude that $\frac{h * \varphi}{z}+\sigma \frac{\overline{g * \varphi}}{\bar{z}} \neq 0$, so the first assertion follows.

For obtaining coefficients condition, let $f(z)=h(z)+\overline{g(z)}$ is of the form (3.1), and $\varphi(z)=z+\sum_{n=2}^{\infty} \phi_{n} z^{n}$ be the series expansion of analytic function $\varphi(z)$, then $\left|\phi_{n}\right| \leq n(2 n-1)$ for all $n \geq 2$, by Lemma 3.1. From previous part we see that

$$
\begin{aligned}
\left|\frac{h * \varphi}{z}+\sigma \frac{\overline{g * \varphi}}{\bar{z}}\right| & =\left|1+\sum_{n=2}^{\infty} a_{n} \phi_{n} z^{n-1}+\sigma\left(b_{1}+\sum_{n=2}^{\infty} \overline{b_{n} \phi_{n}} \bar{z}^{n-1}\right)\right| \\
& \geq\left|1+\sigma b_{1}\right|-\sum_{n=2}^{\infty}\left|a_{n}\right|\left|\phi_{n}\right||z|^{n-1}-|\sigma| \sum_{n=2}^{\infty}\left|b_{n}\right|\left|\phi_{n}\right||z|^{n-1} \\
& \geq\left|1+\sigma b_{1}\right|-\sum_{n=2}^{\infty} n(2 n-1)\left|a_{n}\right|-\sum_{n=2}^{\infty} n(2 n-1)\left|b_{n}\right| \\
& >0
\end{aligned}
$$

when $\sum_{n=2}^{\infty} n(2 n-1)\left|a_{n}\right|+n(2 n-1)\left|b_{n}\right|<1-\left|b_{1}\right|$.

References

1. Al-Amiri, H. and Mocanu, P. T., Spirallike nonanalytic functions, Proc. Amer. Math. Soc. 82 (1), 61-65, (1981).
2. Chuaqui, M., Duren, P. and Osgood, B., Curvature properties of planar harmonic mappings, Comput. Methods Funct. Theory 4 (1), 127-142, (2004).
3. Clunie, J. and Sheil-Small, T., Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (2), 3-25, (1984).
4. Duren, P. L., Harmonic Mappings in the Plane, Cambridge University Press, New York, (2004).
5. Goodman, A. W., On Uniformly Convex Functions, Ann. Polon. Math., 56, 87-92, (1991).
6. Goodman, A. W., On Uniformly Starlike Functions, J. Math. Ana. \& App. 155, 364-370, (1991).
7. Mocanu, P. T., Starlikeness and convexity for nonanalytic functions in the unit disc, Mathematica (Cluj) 22 (45), 77-83, (1980).
8. Nezhmetdinov, I. R., Classes of Uniformly Convex and Uniformly Starlike Functions as Dual Sets, J. Math. Anal. Appl. 216, 40-47, (1997).
9. Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, (1975).
10. Ronning, F., A survey on uniformly convex and uniformly starlike functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A, 47 (13), 123-134, (1993).
11. Sheil-Small, T., Constants for Planar Harmonic Mappings, J. London Math. Soc. 2 (42), 237-248, (1990).

Shahpour Nosrati,
Faculty of Mathematical Scienes,
Shahrood University of Technology,
Iran.
E-mail address: shahpournosrati@yahoo.com
and
Ahmad Zireh,
Faculty of Mathematical Scienes,
Shahrood University of Technology,
Iran.
E-mail address: azireh@gmail.com

[^0]: Project
 Harmonic Functions in Starlike and Convex Forms View project

[^1]: 2010 Mathematics Subject Classification: Primary 30C45; Secondary 31C05, 31A05.
 Submitted December 29, 2016. Published October 04, 2017

