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On Fully-Convex Harmonic Functions and their Extension

Shahpour Nosrati and Ahmad Zireh

abstract: Uniformly convex univalent functions that introduced by Goodman,
maps every circular arc contained in the open unit disk with center in it into a convex
curve. On the other hand, a fully-convex harmonic function, maps each subdisk
|z| = r < 1 onto a convex curve. Here we synthesis these two ideas and introduce a
family of univalent harmonic functions which are fully-convex and uniformly convex
also. In the following we will mention some examples of this subclass and obtain a
necessary and sufficient conditions and finally a coefficient condition is given as an
aplication of some convolution results.

Key Words:Uniformly convex function, Fully-Convex function, Harmonic
function, Convolution.
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1. Introduction and Preliminaries

Let D = {z ∈ C : |z| < 1} be the open unit disk in complex plane. Let A be
the familier class of all analytic functions of the form

f(z) = z +

∞
∑

n=2

anz
n (1.1)

in the open unit disk D. Let S denotes the family of all functions f(z) of the form
(1.1) that are univalent in D and normalized with f(0) = 0 and f ′(0) = 1.

A conformal function f(z) is said to be starlike if every point of its range can
be connected to the origin by a radial line that lies entirely in that region. The
class of all starlike functions in S is shown by S∗ [9] and f(z) ∈ S∗ if and only if

Re {z f
′(z)

f(z)
} > 0. Starlikeness is a hereditary property for conformal mappings,

so if f(z) ∈ S, and if f maps D onto a domain that is starlike with respect to the
origin, then the image of every subdisk |z| < r < 1 is also starlike with respect to
the origin.
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An analytic function f(z) is said to be convex if its range f(D) is a convex set.
It has shown that every convex function f in S satisfy following analytic property

Re {1 + z
f ′′(z)

f ′(z)
} > 0

The class of all convex functions in S is denoted by K [9].
The subclass of uniformly starlike functions, UST introduced by Goodman [6]

and studied in analytic and geometric view.

Definition 1.1. [6] A function f(z) ∈ S
∗ is said to be uniformly starlike in D if

it has the property that for every circular arc γ contained in D, with center ζ ∈ D,
the arc f(γ) be starlike with respect to f(ζ). We denote the family of all uniformly
starlike functions by UST and we have,

UST =
{

f(z) ∈ S : Re
(z − ζ)f ′(z)

f(z)− f(ζ)
> 0 , (z, ζ) ∈ D

2
}

(1.2)

It’s clear that UST ⊂ S
∗ and every function in UST maps each subdisk {|z−ζ| <

ρ} ⊂ D onto a domain starlike with respect to f(ζ). Goodman [5] also defined the
subclass of convex functions with this property that map each disk {|z−ζ| < ρ} ⊂ D

onto a convex domain and called it uniformly convex function and denoted the set
of all these functions by UCV:

Definition 1.2. [5] A function f(z) ∈ K is said to be uniformly convex in D if it
has the property that for every circular arc γ contained in D, with center ζ ∈ D,
the arc f(γ) be a convex arc. We have,

UCV =
{

f(z) ∈ S : Re
(

1 + (z − ζ)
f ′′(z)

f ′(z)

)

≥ 0 , (z, ζ) ∈ D
2
}

(1.3)

A summary of early works on uniformly starlike and uniformly convex functions
can be found in [10].

The complex-valued function f(x, y) = u(x, y)+ iv(x, y) is complex-valued har-
monic function in D if f is continuous and u and v are real harmonic in D. We
denote H the family of continuous complex-valued functions which are harmonic
in the open unit disk D. In simply-connected domain D, f ∈ H has a canonical
representation f = h + g, where h and g are analytic in D [3,4]. Then, g and h

have expansions in Taylor series as h(z) =

∞
∑

n=0

anz
n and g(z) =

∞
∑

n=0

bnz
n, so we

may represent f by a power series of the form

f(z) = h(z) + g(z) =

∞
∑

n=0

anz
n +

∞
∑

n=0

bnzn (1.4)

The Jacobian of a function f = u+iv is Jf (z) =

∣

∣

∣

∣

ux uy

vx vy

∣

∣

∣

∣

= |h′(z)|2−|g′(z)|2, and

f(z) = h(z)+g(z) is sense-preserving if Jf (z) > 0. In 1984, Clunie and Sheil-Small
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[3] investigated the class SH , consisting of sense-preserving univalent harmonic
functions f(z) = h(z) + g(z) in simply-connected domain D which normalized by
f(0) = 0 and fz(0) = 1 with the form,

f(z) = h(z) + g(z) = z +

∞
∑

n=2

anz
n +

∞
∑

n=1

bnzn (1.5)

The subclass S0H of SH includes all functions f ∈ SH with fz(0) = 0, so S ⊂ S0H ⊂
SH . Clunie and Sheil-Small also considered convex functions in SH , denoted by
KH . The hereditary property of convexity for conformal maps does not generalize
to univalent harmonic mappings. If f is a univalent harmonic map of D onto
a convex domain, then the image of the disk |z| < r is convex for each radius
r ≤

√
2 − 1, but not necessarily for any radius in the interval

√
2 − 1 < r < 1. In

fact, the function

f(z) = Re
z

1− z
+ iIm

z

(1− z)2
(1.6)

=
z − 1

2z
2

(1− z)2
+

− 1
2z

2

(1− z)2
∈ KH

is a harmonic mapping of the disk D onto the half-plane Rew > − 1
2 , but the image

of the disk |z| ≤ r fails to be convex for every r in the interval
√
2 − 1 < r < 1

[4]. Thus we need a property to explain convexity of a map in a hereditary form
in whole disk. We have following definition.

Definition 1.3. [2] A harmonic mapping f with f(0) = 0 of the unit disk is said
to be fully-convex if it maps every circle |z| = r < 1 in a one-to-one manner onto
a convex curve.

For f ∈ SH , the family of fully-convex harmonic functions denotes by FKH . In
1980 Mocanu gave a relation between fully-starlikeness and a differential operator
of a non-analytic function [7]. Let

Df = zfz − zfz (1.7)

be the differential operator and

D2f = D(Df) = zzfzz + zzfzz + zfz + zfz (1.8)

Lemma 1.4. [7] Let f ∈ C1(D) is a complex-valued function such that f(0) = 0,

f(z) 6= 0 for all z ∈ D − {0}, and Jf (z) > 0 in D and Re
Df(z)

f(z)
> 0 then f is

univalent and fully-starlike in D.

Lemma 1.5. Let f ∈ C2(D) is a complex-valued function such that f(0) = 0,

f(z) 6= 0 for all z ∈ D − {0}, and Jf (z) > 0 in D and Re
D2f(z)

Df(z)
> 0 then f is

univalent and fully-convex in D.
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Since for a sense-preserving complex-valued function f(z), Df 6= 0, If f(z) ∈ SH

and satisfies condition such asRe
Df(z)

f(z)
> 0 orRe

D2f(z)

Df(z)
> 0 for all z ∈ D−{0},

then f maps every circle 0 < |z| = r < 1 onto a simple closed curve [7]. However, a
fully-starlike mapping need not be univalent [2], we restrict our discussion to SH .

2. Definition and Examples

For a harmonic function f(z) = h(z) + g(z) ∈ SH , and ζ ∈ D we define the
operator

Df(z, ζ) = (z − ζ)fz(z)− (z − ζ)fz(z)

= (z − ζ)h′(z)− (z − ζ)g′(z) (2.1)

is harmonic also. For ζ = 0 the operator Df(z, 0) = zfz−zfz = zh′−zg′ = Df(z)
is previous operator (1.7). Differentiating of the operator Df(z, ζ) gives us

D2f(z, ζ) = D(Df(z, ζ))

= D((z − ζ)h′(z)− (z − ζ)g′(z))

= (z − ζ)2h′′(z) + (z − ζ)2g′′(z) + (z − ζ)h′(z)

+(z − ζ)g′(z) (2.2)

For ζ = 0 the operator D2f(z, 0) = z2h′′(z) + z2g′′(z) + zh′(z) + zg′(z) = D2f(z)
has described by Al-Amiri and Mocanu [1]. Similar to definition (1.1) we say that
for an arbitrary function:

Definition 2.1. A function f ∈ SH is said to be uniformly fully-convex harmonic
function in D if it has the property that for every circular arc γ contained in D,
with center ζ ∈ D, the arc f(γ) is convex in f(D).

We denote the set of all uniformly fully-convex harmonic functions in D by
UFKH . The following theorem gives analytic equivalency for above definition:

Theorem 2.2. Let f ∈ SH . f ∈ UFKH if and only if

Re
D

2f(z, ζ)

Df(z, ζ)
> 0 , (z, ζ) ∈ D

2 (2.3)

Proof: Let γ : ζ + reiθ with θ1 ≤ θ ≤ θ2 be a circular arc centered at ζ and
contained in D, then the image of γ under f is convex if the argument of the
tangent to the image be a non-decreasing function of θ, that is,

∂

∂θ

(

arg
∂

∂θ

{

f(z)− f(ζ)
}

)

≥ 0

Hence

Im
∂

∂θ

(

log
∂

∂θ

{

f(z)− f(ζ)
}

)

≥ 0



On Fully-Convex Harmonic ... 55

But for a circular arc γ, set z = ζ+reiθ , then
∂

∂θ
z = i(z−ζ) and a brief computation

will give us

∂

∂θ

{

f(z)− f(ζ)
}

= i
{

(z − ζ)fz(z)− (z − ζ)fz(z)
}

= iDf(z, ζ)

then

∂

∂θ
log iDf(z, ζ) =

∂

∂θ
log i

{

(z − ζ)h′(z)− (z − ζ)g′(z)
}

=
i
[

h′(z) + (z − ζ)h′′(z)
]

iDf(z, ζ)
i(z − ζ)

− i
[

g′(z) + (z − ζ)g′′(z)
]

iDf(z, ζ)
i(z − ζ)

= i
D2f(z, ζ)

Df(z, ζ)

Therefore, we must have

Im
∂

∂θ
log iDf(z, ζ) = Re

D2f(z, ζ)

Df(z, ζ)
≥ 0

as we want. ✷

It should be noted that
D2f(z, ζ)

Df(z, ζ)
(0, 0) = 1, and

UFKH =
{

f(z) ∈ SH : Re
D2f(z, ζ)

Df(z, ζ)
> 0 , (z, ζ) ∈ D

2
}

(2.4)

It’s simple that one checks the rotations, e−iαf(eiαz) for some real α, are preserve

the class UFKH and the transformation
1

t
f(tz) preserves this class also, where

0 < t ≤ 1. On the other hand, the class UFKH includes all fully-convex functions
and uniformly convex functions. With g = 0 in (2.3), the analytic function f(z) ∈
UFKH by (2.1) and (2.2) satisfies condition

Re
D2f(z, ζ)

Df(z, ζ)
= Re

(z − ζ)2h′′(z) + (z − ζ)h′(z)

(z − ζ)h′(z)
= Re

(

1 + (z − ζ)
h′′(z)

h′(z)

)

≥ 0

where (z, ζ) ∈ D2. Then

Corollary 2.3. If f ∈ UCV be an analytic function, then f ∈ UFKH . So, UCV ⊂
UFKH ⊂ KH . Goodman [5] shows the analytic function f(z) =

z

1−Az
∈ UCV if

and only if |A| ≤ 1

3
, thus the convex function f(z) =

z

1− z
/∈ UFKH .
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Example 2.1. For |β| < 1 the affine mappings f(z) = z + βz ∈ UFKH , since

Re
(z − ζ) + (z − ζ)β

(z − ζ)− (z − ζ)β
≥ 0

is equivalent to

Re
(

(z − ζ) + (z − ζ)β
)(

(z − ζ)− (z − ζ)β
)

≥ 0

that is (1 − |β|2)|z − ζ|2 ≥ 0.

Corollary 2.4. For ζ = 0 in (2.3), the harmonic function f ∈ UFKH will be
univalent and fully-convex in D by Lemma 1.5. Thus it’s clear any non fully-convex

harmonic function is not in UFKH . The harmonic function f(z) = Re
z

1− z
+

iIm
z

(1 − z)2
isn’t fully-convex ( [4], p.46), then f /∈ UFKH .

In the following we will give a necessary and sufficient condition for that f ∈
UFKH . This condition is a generalization form of a theorem about fully-convex
functions mentioned by Chuaqui et al. in [2], p139.

Theorem 2.5. Let f(z) ∈ SH , f ∈ UFKH if and only if

|(z − ζ)h′(z)|2ReQh ≥ (2.5)

|(z − ζ)g′(z)|2ReQg +Re
{

(z − ζ)3
(

h′′(z)g′(z)− h′(z)g′′(z)
)

}

where Qh = 1+ (z − ζ)
h′′(z)

h′(z)
and Qg = 1+ (z − ζ)

g′′(z)

g′(z)
for (z, ζ) in polydisk D

2.

Proof: According to the definition, f ∈ UFKH if and only if Re
D2f(z, ζ)

Df(z, ζ)
> 0

for (z, ζ) ∈ D2, if and only if Re
{

D2f(z, ζ)Df(z, ζ)
}

> 0 for (z, ζ) ∈ D2, then a

simple calculation gives us (2.5). ✷

Lemma 2.6. f = h+ βh ∈ UFKH if and only if h ∈ UCV, where |β| < 1.

Proof: Let f = h+ g ∈ SH and g = βh with |β| < 1, then f ∈ UFKH if and only
if (2.5) holds. Since in this case, h and g satisfy equality Qh = Qg so (2.5) holds if
and only if |(z − ζ)h′(z)|2ReQh(1− |β|2) ≥ 0, or ReQh ≥ 0 that shows h ∈ UCV.

✷

Example 2.2. The analytic function h = z+Az2 is in UCV if and only if |A| ≤ 1

6
[5]. By Lemma 2.6 we get f(z) = z +Az2 + βz + βAz2 ∈ UFKH with |β| < 1 and

|A| ≤ 1

6
. For example, let A =

1

6
, β = − i

2
then f = z+

1

6
z2− i

2
z − i

12
z2 ∈ UFKH .

In Figure 1, the disk |z − 0.7| < 0.3 is mapped under this uniformly fully-convex
harmonic function to a convex elliptical shape with center f(ζ) = (0.78, 0.39).
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Figure 1: The image of |z − 0.7| < 0.3 under f = z + 1
6z

2− i
2z − i

12z
2 ∈ UFKH .

3. Convolution and a sufficient condition

The convolution or Hadamard product of two harmonic functions f(z) and F (z)
with canonical representations

f(z) = h(z) + g(z) = z +
∞
∑

n=2

anz
n +

∞
∑

n=1

bnz
n (3.1)

and

F (z) = H(z) +G(z) = z +
∞
∑

n=2

Anz
n +

∞
∑

n=1

Bnz
n (3.2)

is defined as

(f ∗ F )(z) = (h ∗H)(z) + g ∗G(z) = z +

∞
∑

n=2

anAnz
n +

∞
∑

n=1

bnBnz
n (3.3)

The right half-plane mapping ℓ(z) =
z

1− z
acts as the convolution identity and the

Koebe map k(z) =
z

(1− z)2
acts as derivative operation over functions convolution.

We have some properties for convolution over analytic functions f and g:

f ∗ g = g ∗ f , α(f ∗ g) = αf ∗ g
f ∗ ℓ = f , zf ′(z) = f ∗ k(z)

where α ∈ C. For a given subset V ⊂ A, its dual set V∗ is defined by

V
∗ =

{

g ∈ A :
f ∗ g(z)

z
6= 0, ∀f ∈ V, ∀z ∈ D

}

(3.4)
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Nezhmetdinov (1997) proved that class UCV is dual set for certain family of
functions from A. He proved ( [8], Theorem 2, p.43) that the class UCV is the dual
set of a subset of A consisting of functions ϕ : D → C given by

ϕ(z) =
z

(1 − z)3

[

1− z − 4z

(α + i)2

]

(3.5)

where α ∈ R. He determined the uniform estimate |an(ϕ)| ≤ n(2n−1) for the n-th
Taylor coefficient of ϕ(z):

Lemma 3.1. [8] Let G is all function ϕ ∈ A of the form (3.5), then UCV = G∗

and |an(ϕ)| ≤ n(2n− 1) for all n ≥ 2.

For obtaining a sufficient condition in class UFKH , we define the dual set of
a harmonic function. Let AH be the class of complex-valued harmonic functions
f(z) = h(z) + g(z) in simply connected domain D of the form (1.5) which are not
necessarily sense-preserving univalent on D. We define the dual set of a subset of
AH :

Definition 3.2. For a given subset VH ⊂ AH , the dual set V∗
H is

V
∗
H =

{

F = H +G ∈ AH :
h ∗H
z

+
g ∗G
z

6= 0, ∀f = h+ g ∈ VH , ∀z ∈ D

}

(3.6)

Theorem 3.3. Let α ∈ R, |w| = 1 and

GH =

{

ϕ− σϕ : ϕ(z) =
z

(1 − z)3

(

1− w − iα

2− w − iα
z
)

,

σ =
(1− w)(2 − w − iα)

(1− w)(2 − w − iα)
, z ∈ D

}

then UFKH = G∗
H . Furthermore If

∞
∑

n=2

n(2n−1)|an|+n(2n−1)|bn| < 1−|b1| then

f ∈ UFKH .

It’s clear that the analytic function ϕ is the same (3.5), but σ with |σ| = 1 isn’t
an arbitrary number and depend on both w and α in ϕ.

Proof: Let f = h+ g ∈ UFKH , that is

Re
(z − ζ)2h′′(z) + (z − ζ)2g′′(z) + (z − ζ)h′(z) + (z − ζ)g′(z)

(z − ζ)h′(z)− (z − ζ)g′(z)
> 0 , (3.7)

(z, ζ) ∈ D2. For ζ = 0 and then z = 0 we have
D2f(z, ζ)

Df(z, ζ)
= 1, hence the condition

(3.7) may be write as

iα
(

(z − ζ)h′(z)− (z − ζ)g′(z)
)

6= (z − ζ)2h′′(z) + (z − ζ)2g′′(z)

+(z − ζ)h′(z) + (z − ζ)g′(z)
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where α ∈ R. By the minimum principle for harmonic functions, it is sufficient
to verify this condition for |z| = |ζ| and so, we may assume that ζ = wz with
|w| = 1, then from the definition of the dual set for harmonic functions (3.6),

with straightforward calculation we conclude that
h ∗ ϕ
z

+ σ
g ∗ ϕ
z

6= 0, so the first

assertion follows.
For obtaining coefficients condition, let f(z) = h(z) + g(z) is of the form (3.1),

and ϕ(z) = z +

∞
∑

n=2

φnz
n be the series expansion of analytic function ϕ(z), then

|φn| ≤ n(2n− 1) for all n ≥ 2, by Lemma 3.1. From previous part we see that

∣

∣

∣

h ∗ ϕ
z

+ σ
g ∗ ϕ
z

∣

∣

∣
=

∣

∣

∣
1 +

∞
∑

n=2

anφnz
n−1 + σ

(

b1 +

∞
∑

n=2

bnφnz
n−1

)

∣

∣

∣

≥ |1 + σb1| −
∞
∑

n=2

|an||φn||z|n−1 − |σ|
∞
∑

n=2

|bn||φn||z|n−1

≥ |1 + σb1| −
∞
∑

n=2

n(2n− 1)|an| −
∞
∑

n=2

n(2n− 1)|bn|

> 0

when

∞
∑

n=2

n(2n− 1)|an|+ n(2n− 1)|bn| < 1− |b1|. ✷
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